PROPOSITIONAL LOGIC (2)

based on

Huth & Ruan
Logic in Computer Science:
Modelling and Reasoning about Systems
Cambridge University Press, 2004

Russell & Norvig
Artificial Intelligence:
A Modern Approach
Prentice Hall, 2010

Clauses

ullet Clauses are formulas consisting only of \vee and \neg

$$\begin{array}{c} p \vee q \vee \neg r \\ \neg p \vee \neg q \end{array}$$

(brackets within a clause are not allowed!)

they can also be written using \rightarrow , \vee (after \rightarrow) and \wedge

(before →)

 $\begin{array}{c} r \rightarrow p \vee q \\ p \wedge q \rightarrow \bot \\ \top \rightarrow p \vee q \\ \blacktriangleright \top \rightarrow \bot \end{array}$

Clause without positive literal

Clause without negative literal

an atom or its negation is called a *literal*

Conjunctive & Disjunctive Normal Form

• A formula is in <u>conjunctive normal form</u> if it consists of a conjunction of clauses

$$(p \lor q \lor \neg r) \land (p \lor \neg q) \land (p \lor r)$$
$$(r \to p \lor q) \land (q \to p) \land (\top \to p \lor r)$$

- "conjunction of disjunctions"
- A formula is in <u>disjunctive normal form</u> if it consists of a disjunction of conjunctions

$$(p \land q \land \neg r) \lor (p \land \neg q) \lor (p \lor r)$$

Conjunctive & Disjunctive Normal Form

The transformation from CNF to DNF is exponential

$$(p_{1} \wedge p_{2} \wedge p_{3}) \vee (p_{1} \wedge p_{2} \wedge q_{3}) \vee (p_{1} \wedge q_{2} \wedge q_{3}) \vee (p_{1} \wedge q_{2} \wedge q_{3}) \vee (p_{1} \wedge q_{2} \wedge q_{3}) \vee (q_{1} \wedge p_{2} \wedge p_{3}) \vee (q_{1} \wedge p_{2} \wedge q_{3}) \vee (q_{1} \wedge p_{2} \wedge p_{3}) \vee (q_{1} \wedge q_{2} \wedge p_{3}) \vee (q_{1} \wedge q_{2} \wedge p_{3}) \vee (q_{1} \wedge q_{2} \wedge q_{3}) \vee (q_{1} \wedge q_{2} \wedge q_{3}) \vee (q_{1} \wedge q_{2} \wedge q_{3})$$

Conjunctive Normal Form

Any formula can be written in CNF

$$(p \lor q \to r) \lor (q \to p) = \neg (p \lor q) \lor r \lor \neg q \lor p$$

$$= (\neg p \land \neg q) \lor r \lor \neg q \lor p$$

$$= (\neg p \lor r \lor \neg q \lor p)$$

$$\land (\neg q \lor r \lor \neg q \lor p)$$

$$= (\neg q \lor r \lor p)$$

(consequently, any formula can also be written in DNF, but the DNF formula may be exponentially larger)

Checking Satisfiability of Formulas in DNF

- Checking DNF satisfiability is easy: process one conjunction at a time; if at least one conjunction is not a contradiction, the formula is satisfiable
 - → DNF satisfiability can be decided in polynomial time

$$(p_1 \land p_3 \land \neg p_3) \lor (p_1 \land \neg p_2 \land \neg p_3) \lor (p_1 \land \neg p_2 \land p_3) \lor (\neg p_1 \land p_3 \land \neg p_3) \lor$$

Conversion to DNF is not feasible in most cases (exponential blowup)

Checking Satisfiability of Formulas in CNF

 No polynomial algorithm is known for checking the satisfiability of arbitrary CNF formulas

Example: we could use such an algorithm to solve graph coloring with *k* colors

• for each node *i*, create a formula

$$\phi_i = p_{i1} \vee p_{i2} \vee \cdots \vee p_{ik}$$

indicating that each node *i* must have a color

• for each node i and different pair of colors c_i and c_j , create a formula

$$\phi_{ic_1c_2} = \neg (p_{ic_1} \land p_{ic_2}) = \neg p_{ic_1} \lor \neg p_{ic_2}$$

indicating a node may not have more than 1 color

• for each edge, create *k* formulas

$$\phi_{ijc} = \neg (p_{ic} \land p_{jc}) = \neg p_{ic} \lor \neg p_{jc}$$

indicating that a pair connected nodes *i* and *j* may not both have color *c* at the same time

Resolution Rule

Essential in most satisfiability solvers for CNF formulas is the **resolution rule** for clauses:

Given two clauses $l_1 \lor \cdots \lor l_k$ and $m_1 \lor \cdots \lor m_n$, where $l_1, \ldots, l_k, m_1, \ldots, m_n$ represent literals and it holds that $l_i = \neg m_i$, then it holds that

$$l_1 \vee \cdots \vee l_k, m_1 \vee \cdots \vee \cdots m_n \vdash_R l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots l_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots m_n$$

Example: $p \lor q \lor \neg r, r \lor s \vdash_R p \lor q \lor s$ $r \to p \lor q, r \lor s \vdash_R p \lor q \lor s$

Proof for Resolution

on an example

1.	$p \vee q$	premise	
2.	$q \rightarrow r$	premise	$\neg q \lor r$
3.	p	assumption	
4.	$p \vee r$	√i 3	
5.	\overline{q}	assumption	
6.	r	→ e 2,5	
7.	$p \vee r$	√i 6	
8.	$p \vee r$	√e 1,3-4, 5-7	

Completeness of Resolution

• If it holds that $C_1, \ldots, C_n \models \bot$ for clauses C_1, \ldots, C_n (i.e. the clauses are a contradiction), then we can derive \bot from C_1, \ldots, C_n by repeated application of the resolution rule

$$p, p \rightarrow q \lor r, q \rightarrow \bot, r \rightarrow \bot \qquad \vdash_{R} \qquad q \lor r, q \rightarrow \bot, r \rightarrow \bot$$
$$\vdash_{R} \qquad r, r \rightarrow \bot$$
$$\vdash_{R} \qquad \bot$$

How to find the resolution steps in general? For some types of clauses it is easier...

Definite clauses & Horn clauses

 A <u>definite clause</u> is a clause with exactly one positive literal

$$p, q, p \land q \rightarrow t$$

 A <u>horn clause</u> is a clause with at most one positive literal

$$p,q,p \land q \rightarrow t,p \land q \rightarrow \bot$$

A clause with one positive literal is called a **fact**

Forward chaining for Definite clauses

• The <u>forward chaining algorithm</u> calculates facts that can be entailed from a set of definite clauses

```
C = initial set of definite clauses

repeat

if there is a clause p_1,...,p_n 	o q in C where p_1,...,p_n are

facts in C then

add fact q to C

end if

until no fact could be added

return all facts in C
```

This algorithm is complete for facts: any fact that is entailed, will be derived.

Forward chaining for Horn clauses

- We now also allow to add \perp and other clauses without positive literals to C
- We stop immediately \perp when is found, and return that the set of formulas is contradictory.

$$\mathbf{C}_{1} = \{p, p \to q, p \land q \to r, r \to \bot\}
\mathbf{C}_{2} = \{p, q, p \to q, p \land q \to r, r \to \bot\}
\mathbf{C}_{3} = \{p, q, r, p \to q, p \land q \to r, r \to \bot\}
\mathbf{C}_{4} = \{p, q, r, \bot, p \to q, p \land q \to r, r \to \bot\}$$

Note:

- 1) a set of definite clauses is always satisfiable.
- 2) we can decide in linear time whether a set of Horn clauses is satisfiable.

Deciding entailment for Horn clauses

Suppose we would like to know whether

$$C_1,\ldots,C_n\models p_1,\ldots,p_n\to q$$

where C_1, \ldots, C_n are Horn clauses; then it suffices to determine whether

$$C_1,\ldots,C_n,p_1,\ldots,p_n\vdash_R q$$

(we can show this by means of \rightarrow introduction)

As entailment of facts can be decided in linear time,
 Horn clause entailment can be determined in linear time as well

Deciding satisfiability of CNF formulas: DPLL

- The DPLL algorithm for deciding satisfiability was proposed by Davis, Putman, Logeman and Loveland (1960, 1962)
- General ideas:
 - we perform depth-first over the space of all possible valuations
 - based on a partial valuation, we simplify the formula to remove redundant literals
 - based on the formula, we fix the valuation of as many atoms as possible

DPLL: Simplification

- If the valuation of atom p is "true"
 - every clause in which literal p occurs, is removed
 - from every clause in which p is negated, $\neg p$ is removed

$$\{p = true\}, (p \lor q) \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \lor \neg r) \}$$

$$\{p = true\}, (\neg p \lor q) \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r))\}$$

similar to resolution

- Similarly, if the valuation of atom p is "false"
 - ullet every clause in which literal $\neg p$ occurs, is removed
 - from every clause in which *p* occurs, literal *p* is removed

DPLL: Simplification

• Special case 1 of simplification is when an empty clause is obtained, i.e. the clause \bot

$$\{p = true\}, \neg p \land (q \lor r) \Rightarrow \{p = true\}, \bot \land (q \lor r) \Rightarrow \{p = true\}, \bot \land (q \lor r) \Rightarrow \{p = true\}, \bot$$

- in this case the current valuation can never be extended to a valuation that satisfies the formula
- Special case 2 of simplification is when the empty CNF formula is obtained, i.e. the formula \top

$$\{p=false\}, \neg p \Rightarrow \{p=false\}, \top$$

• in this case we have found a satisfying valuation

DPLL: Pure symbols

• If an atom always has the same sign in a formula (i.e., the literals p and $\neg p$ do not occur at the same time), the atom is called *pure*. We fix the valuation of a pure atom to the value indicated by this sign

$$\emptyset, (p \lor q) \land (p \lor \neg r) \Rightarrow \{p = true\}, (p \lor q) \land (p \lor \neg r)$$
$$\emptyset, (\neg p \lor q) \land (\neg p \lor \neg r) \Rightarrow \{p = false\}, (\neg p \lor q) \land (\neg p \lor \neg r)$$

 Note: we can apply simplification afterwards and remove redundant clauses

DPLL: Unit clauses

• If a clause consists of only one literal (positive or negative), this clause is called a *unit clause*. We fix the valuation of an atom occurring in a unit clause to the value indicated by the sign of the literal.

$$\emptyset, p \land (q \lor r) \Rightarrow \{p = true\}, p \land (q \lor r)$$

 Also here, we apply simplification afterwards; after simplification, we may have new unit clauses, which we can use again; this process is called unit propagation

DPLL Algorithm

```
DPLL (valuations V, formula \varphi)
         \varphi' = simplification of \varphi based on V
         if \varphi' is an empty formula then return true
         if \varphi' contains the empty clause then return false
         if \varphi' contains a pure atom p with sign v then
                  return DPLL(V \cup \{p=\nu\}, \varphi')
         if \varphi' contains a unit clause for atom p with sign v then
                  return DPLL(V \cup \{p=v\}, \varphi')
         let p be an arbitrary atom occurring in \varphi'
         if DPLL(V \cup \{p=true\}, \varphi') then return true
         else return DPLL(V \cup \{p=false\}, \varphi')
```

 Component analysis: if the clauses can be partitioned such that variables are not shared between clauses in different partitions, we solve the partitions independently

$$(p \lor q) \land (\neg p) \land (r \lor s) \land r$$
component 1 component 2

 Value and variable ordering: when choosing the next atom to fix, try to be clever (i.e. pick one that occurs in many clauses)

 <u>Clause learning:</u> if a contradiction is found, try to find out which assignments caused this contradiction, and add a clause (entailed by the original CNF formula) to avoid this combination of assignments in the future

Example

$$\begin{array}{l} (p \lor r) \land (q \lor r) \land (\neg p \lor \neg q \lor \neg r \lor \neg t) \\ \land (\neg r \lor t) \land (r \lor \neg t) \land (\neg r \lor \neg t) \end{array}$$

Note: no unit propagation or pure literals present, branching necessary.

$$(p \vee r) \wedge (q \vee r) \wedge (\neg p \vee \neg q \vee r \vee t) \wedge (\neg r \vee t) \wedge (r \vee \neg t) \wedge (\neg r \vee \neg t)$$

No propagation possible, branch with *p*=true

$$(q \vee r) \wedge (\neg q \vee r \vee t) \wedge (\neg r \vee t) \wedge (r \vee \neg t) \wedge (\neg r \vee \neg t)$$

No propagation possible, branch with q=true

$$(r \vee t) \wedge (\neg r \vee t) \wedge (r \vee \neg t) \wedge (\neg r \vee \neg t)$$

No propagation possible, branch with r=true $t \land \neg t$

Conflict found in $t \to \text{apply resolution on } t \text{ for the original versions of conflicting clauses } (\neg r \lor t) \land (\neg r \lor \neg t)$

 \rightarrow clause $\neg r$ is entailed by the original formula, add $\neg r$ as learned clause to original formula \rightarrow apply propagation on this formula new $\rightarrow p$ =true, q=true, r=false \rightarrow search stops

- Random restarts: if the search is unsuccessful too long, stop the search, and start from scratch with learned clauses (and possibly a different variable/value ordering)
- <u>Clever indexing:</u> use heavily optimized data structures for storing clauses, atoms, and lists of clauses in which atoms occur
- Portfolios: run several different solvers for a short time; use data gathered from these runs to select the final solver to execute

Applications of SAT solvers

- Model checking
- Planning
- Scheduling
- Experiment design
- Protocol design (networks)
- Multi-agent systems
- E-commerce
- Software package management
- Learning automata

• ...

First order logic

 Essentially, first order logic adds variables in logic formulas

Assume we have three cats (Anna, Bella, Cat), and cats have tails.

In **propositional logic**, we could write: iscatAnna, iscatBella, iscatCat, iscatAnna → hastailAnna, iscatBella → hastailBella, iscatCat → hastailCat.

In **first order logic**, we would write: iscat(anna), iscat(bella), iscat(anna), $\forall X \text{ iscat}(X) \rightarrow \text{hastail}(X)$